Peru

Column


This dashboard is a continuation of a previous post. As we explained in there, in a treemap chart each brand of a “tree” is given a rectangle, which is then tiled with smaller rectangles. Then, each area is proportional to a specified dimension of the data. Treemaps are very useful for displaying hierarchical data. In the post mentioned we explained how to create interactive sunburst charts and treemaps using {plotly}. In this occasion we will show how to create static treemaps using {treemap} and animated treemaps with {d3treeR} and {highcharter}. The treemaps created with {highcharter} are, in my opinion, especially beautiful and very functional. However, note that although {highcharter} is free for personal users, schools, ngos, etc., it is not free for commercial or governmental use.

On the other hand, the map of Peru is created using {leaflet}. The tootips have been customized to show the name of each region when the user hovers over a region. When clicking on one region it will show the total GVA of the region selected and the % with respect to the total GVA of the country. The provider of the base map is Esri.WorldShadedRelief.

The dashboard presents the data in DaTables using {DT}. It is also possible to customize DataTables, as we will show in the examples. DataTables provides filtering, sorting, pagination and other features.

We will use again data related to the regional and sectoral productive structure of Peru for 2018. Data comes from the Peruvian National Institute of Statistics and Informatics (INEI).

The INEI distinguishes 12 major economic / productive sectors:

  • Agriculture, Livestock, Hunting and Forestry.
  • Fishing and Aquaculture.
  • Extraction of Minerals, Gas and Oil.
  • Manufacturing.
  • Electricity, Gas and Water.
  • Construction.
  • Commerce.
  • Transportation, Storage, Mail and Messaging.
  • Accommodation and Restaurants.
  • Telecommunications and Other Information Services.
  • Public Administration and Defence.
  • Other Services.


Column

Gross Value Added by region (in constant 2007 PEN thousands) and % of total GVA, 2018

Column

Productive Economic Structure by region, 2018. (GVA in constant 2007 PEN thousands)

datatable- DT

Columna


Datatable with fixed column, info = T, sort = T, and values centered.



Columna


Datatable with filter= bottom, class= 'cell-border stripe', searching= T


Few questions about the data

Column

1. REGIONAL CONTRIBUTION TO NATIONAL GVA (DESC)

2. SECTORAL CONTRIBUTION TO NATIONAL GVA (DESC)

Column

3. SECTORAL CONTRIBUTION OF EACH REGION TO NATIONAL GVA (DESC)

4. SECTORAL CONTRIBUTION TO REGIONAL GVA (DESC by region)

Column

5. REGIONAL CONTRIBUTION TO SECTORAL GVA (DESC by sector)

6. SECTOR IN EACH REGION THAT CONTRIBUTES MOST TO NATIONAL GVA (DESC by %)

{treemap}

Example I. Sectoral Level

{treemap} II

Example II. Regional Level

{d3treeR}

Example I. Sectoral Level

{d3treeR} II

Example II. Regional Level

{highcharter}

Example I. Sectoral Level

{highcharter} II

Example II. Regional Level

---
title: "Data visualization: Treemaps with {treemap}, {d3treeR} and {highcharter}"
output: 
  flexdashboard::flex_dashboard:
    storyboard: true
    orientation: columns
    source_code: embed
    vertical_layout: fill
    theme: paper
---



```{r setup, include=FALSE}


# PACKAGES / LIBRARIES:

library(flexdashboard)
library(tidyverse)
library(plotly)
library(leaflet)
library(rnaturalearth)
library(treemap)
library(d3treeR)
library(highcharter)
library(readxl)
library(stringr)
library(knitr)
library(DT)
library(viridisLite)

options(scipen=10000)

```

Peru
===========================================================================

Column {data-width=300}
---------------------------------------------------------------------------

### 

\

This dashboard is a continuation of a [previous post](https://rquer.netlify.com/sunburst_treemaps#peru). As we explained in there, in a **treemap chart** each brand of a "tree" is given a rectangle, which is then tiled with smaller rectangles. Then, each area is proportional to a specified dimension of the data. **Treemaps** are very useful for displaying hierarchical data. In the post mentioned we explained how to create interactive sunburst charts and treemaps using {plotly}. In this occasion we will show how to create static treemaps using {treemap} and animated treemaps with {d3treeR} and {highcharter}. The treemaps created with {highcharter} are, in my opinion, especially beautiful and very functional. However, note that although {highcharter} is free for personal users, schools, ngos, etc., it is not free for commercial or governmental use. 


On the other hand, the map of Peru is created using {leaflet}. The tootips have been customized to show the name of each region when the user hovers over a region. When clicking on one region it will show the total GVA of the region selected and the % with respect to the total GVA of the country. The provider of the base map is `Esri.WorldShadedRelief`. 


The dashboard presents the data in DaTables using {DT}. It is also possible to customize DataTables, as we will show in the examples. DataTables provides filtering, sorting, pagination and other features. 


We will use again data related to the **regional and sectoral productive structure of Peru for 2018**. Data comes from the Peruvian National Institute of Statistics and Informatics ([INEI](https://www.inei.gob.pe/)). 


The INEI distinguishes 12 major economic / productive sectors: 

- Agriculture, Livestock, Hunting and Forestry.
- Fishing and Aquaculture.
- Extraction of Minerals, Gas and Oil.
- Manufacturing.
- Electricity, Gas and Water.
- Construction.
- Commerce.
- Transportation, Storage, Mail and Messaging.
- Accommodation and Restaurants.
- Telecommunications and Other Information Services.
- Public Administration and Defence.
- Other Services.

\






Column
---------------------------------------------------------------------------

### Gross Value Added by region (in constant 2007 PEN thousands) and % of total GVA, 2018

```{r}

library(readxl)
peru_mapa_vab2018 <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/peru_mapa_vab2018.xlsx")

peru_mapa_vab2018$Vab_perc <- formatC(peru_mapa_vab2018$Vab_perc, digits=3)
peru_mapa_vab2018$Vab_perc <- as.numeric(peru_mapa_vab2018$Vab_perc)
peru_mapa_vab2018$vab_2018<- format(peru_mapa_vab2018$vab_2018, big.mark = ",")


peru_map_region <- rnaturalearth::ne_states(country = "Peru", returnclass = "sf") %>%
  select(name, iso_3166_2, geometry) %>%
 left_join(peru_mapa_vab2018, 
            by = "name") 


peru_map_region %>%
  leaflet() %>%
  addProviderTiles(providers$Esri.WorldShadedRelief) %>%
  addPolygons(
    weight = 1,
    label = ~ name,
    color = "darkgreen",
    popup = ~paste("Region:", name,
                   "
", "GVA:", vab_2018, "
", "% GVA:", Vab_perc)) ``` Column --------------------------------------------------------------------------- ### Productive Economic Structure by region, 2018. (GVA in constant 2007 PEN thousands) ```{r} Peru_vab_sectores <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/Peru_vab_sectores_2.xlsx") names(Peru_vab_sectores) = c("Regions", "AGR", "PES", "EXT", "MAN", "ELEC", "CONS", "COM", "TRANS", "REST", "TELEC", "ADPUB", "OS") x<-Peru_vab_sectores %>% group_by(Regions) %>% mutate(total= AGR + PES + EXT + MAN + ELEC + CONS + COM + TRANS + REST + TELEC + ADPUB + OS) %>% arrange(total) %>% ungroup() x$Regions = factor(x$Regions, levels = x$Regions) plotly::plot_ly(data = x, y = ~ Regions, x = ~ AGR, orientation = 'h', name = 'Agriculture, Livestock, Hunting and Forestry', type = 'bar') %>% plotly::add_trace( x = ~ PES, name = "Fishing and Aquaculture") %>% plotly::add_trace( x = ~ EXT, name = "Extraction of Minerals, Gas and Oil") %>% plotly::add_trace( x = ~ MAN, name = "Manufacturing") %>% plotly::add_trace( x = ~ ELEC, name = "Electricity, Gas and Water") %>% plotly::add_trace( x = ~ CONS, name = "Construction") %>% plotly::add_trace( x = ~ COM, name = "Commerce") %>% plotly::add_trace( x = ~ TRANS, name = "Transportation, Storage, Mail and Messaging") %>% plotly::add_trace( x = ~ REST, name = "Accommodation and Restaurants") %>% plotly::add_trace( x = ~ TELEC, name = "Telecommunications and Other Information Services") %>% plotly::add_trace( x = ~ ADPUB, name = "Public Administration and Defence") %>% plotly::add_trace( x = ~ OS, name = "Other Services") %>% plotly::layout(title = " Gross Value Added by region and sector \n (constant 2007 PEN thousands)", barmode = 'stack', legend = list(x = 0.5, y = 0.1), yaxis = list(title = ""), xaxis = list(title = "Source: INEI | Lima includes Callao en Lima Province"), hovermode = "compare", margin = list( l = 20, r = 10, b = 10, t = 80, pad = 2 )) ``` datatable- DT ==================================================================================== Columna {data-width=700} --------------------------------------------------------------------------- \ ### Datatable with fixed column, `info = T`, `sort = T`, and values centered. \ ```{r} Peru_vab_sectores <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/Peru_vab_sectores_2.xlsx") datatable(Peru_vab_sectores, rownames = F, extensions = "FixedColumns", options = list( info = TRUE, sort = TRUE, fixedColumns = list(leftColumns = 1), columnDefs = list(list(className = 'dt-center', targets = 1:12)) ) ) ``` \ Columna {data-width=300} --------------------------------------------------------------------------- \ ### Datatable with `filter= bottom`, `class= 'cell-border stripe'`, `searching= T` \ ```{r} Peru_sectores <- Peru_vab_sectores %>% gather(key = "sector", value = "vab", 2:13) datatable(Peru_sectores, filter = "bottom", rownames = FALSE, class = 'cell-border stripe', extensions = "FixedColumns", options = list( searching = TRUE, info = TRUE, sort = TRUE, fixedColumns = list(leftColumns = 1)) ) ``` Few questions about the data ================================================================================= Column ------------------------------------------------------------------------------ ### **1. REGIONAL CONTRIBUTION TO NATIONAL GVA (DESC)** ```{r} a <- Peru_sectores %>% group_by(Regions) %>% summarise(vab_regional = sum(vab)) %>% mutate(total= sum(vab_regional), percent = 100*(vab_regional/total)) %>% arrange(desc(percent)) %>% select(Regions, percent) %>% ungroup() a$percent <- formatC(a$percent, format = "f", digits = 2) datatable(a) ``` ### **2. SECTORAL CONTRIBUTION TO NATIONAL GVA (DESC)** ```{r} b <- Peru_sectores %>% group_by(sector) %>% summarise(vab_regional = sum(vab)) %>% mutate(total= sum(vab_regional), percent = 100*(vab_regional/total)) %>% arrange(desc(percent)) %>% select(sector, percent) %>% ungroup() b$percent <- formatC(b$percent, format = "f", digits = 2) datatable(b) ``` Column ------------------------------------------------------------------------------ ### **3. SECTORAL CONTRIBUTION OF EACH REGION TO NATIONAL GVA (DESC)** ```{r} c <- Peru_sectores %>% mutate(suma_total= sum(vab), percent= 100*(vab/suma_total)) %>% select(Regions, sector,percent) %>% arrange(desc(percent)) c$percent <- formatC(c$percent, format = "f", digits = 2) datatable(c) ``` ### **4. SECTORAL CONTRIBUTION TO REGIONAL GVA (DESC by region)** ```{r} d <- Peru_sectores %>% group_by(Regions) %>% mutate(suma_total= sum(vab), percent= 100*(vab/suma_total)) %>% select(Regions, sector, percent) %>% arrange(Regions, desc(percent)) %>% ungroup() d$percent <- formatC(d$percent, format = "f", digits = 2) datatable(d) ``` Column ------------------------------------------------------------------------------ ### **5. REGIONAL CONTRIBUTION TO SECTORAL GVA (DESC by sector)** ```{r} e <- Peru_sectores %>% group_by(sector) %>% mutate(suma_total= sum(vab), percent= 100*(vab/suma_total)) %>% select(sector, Regions, percent) %>% arrange(sector, desc(percent)) %>% ungroup() e$percent <- formatC(e$percent, format = "f", digits = 2) datatable(e) ``` ### **6. SECTOR IN EACH REGION THAT CONTRIBUTES MOST TO NATIONAL GVA (DESC by %)** ```{r} f <- Peru_sectores %>% mutate(suma_total= sum(vab), percent= 100*(vab/suma_total)) %>% select(Regions, sector, percent) %>% arrange(desc(percent)) %>% group_by(Regions) %>% top_n(1) %>% ungroup() f$percent <- formatC(f$percent, format = "f", digits = 2) datatable(f) ``` {treemap} ==================================================================================== ### Example I. Sectoral Level ```{r, fig.width=14, fig.height=8} tree_sectores <- treemap( Peru_sectores, index=c("sector","Regions"), vSize="vab", title = "GVA, economic sector and region, 2018 ", vColor="sector", type="index", force.print.labels = F, border.col = c("black", "white"), border.lwds = c(3,2), align.labels = list( c("center","center"), c("center", "top") ) ) ``` {treemap} II ==================================================================================== ### Example II. Regional Level ```{r, fig.width=14, fig.height=8} tree_regions <- treemap( Peru_sectores, index=c("Regions", "sector"), vSize="vab", title = "GVA, region and economic sector, 2018 ", vColor="vab", type="value", palette = "BuPu", force.print.labels = F, border.col = c("black", "white"), border.lwds = c(3,2), align.labels = list( c("center","center"), c("center", "top") ) ) ``` {d3treeR} ==================================================================================== ### Example I. Sectoral Level ```{r} d3tree(tree_sectores, rootname = "GVA, economic sector and region, 2018") ``` {d3treeR} II ==================================================================================== ### Example II. Regional Level ```{r} d3tree(tree_regions, rootname = "GVA, region and economic sector, 2018") ``` {highcharter} ==================================================================================== ### Example I. Sectoral Level ```{r} hctreemap(tree_sectores, allowDrillToNode = TRUE) %>% hc_title(text = "GVA, economic sector and region, 2018") %>% hc_tooltip(pointFormat = "{point.name}:
GVA: {point.value:,.0f}") %>% hc_exporting(enabled = TRUE) ``` {highcharter} II ==================================================================================== ### Example II. Regional Level ```{r} hctreemap(tree_regions, allowDrillToNode = TRUE) %>% hc_title(text = "GVA, region and economic sector, 2018") %>% hc_tooltip(pointFormat = "{point.name}:
GVA: {point.value:,.0f}") %>% hc_exporting(enabled = TRUE) ```