This dashboard is a continuation of a previous post. As we explained in there, in a treemap chart each brand of a “tree” is given a rectangle, which is then tiled with smaller rectangles. Then, each area is proportional to a specified dimension of the data. Treemaps are very useful for displaying hierarchical data. In the post mentioned we explained how to create interactive sunburst charts and treemaps using {plotly}. In this occasion we will show how to create static treemaps using {treemap} and animated treemaps with {d3treeR} and {highcharter}. The treemaps created with {highcharter} are, in my opinion, especially beautiful and very functional. However, note that although {highcharter} is free for personal users, schools, ngos, etc., it is not free for commercial or governmental use.

On the other hand, the map of Peru is created using {leaflet}. The tootips have been customized to show the name of each region when the user hovers over a region. When clicking on one region it will show the total GVA of the region selected and the % with respect to the total GVA of the country. The provider of the base map is Esri.WorldShadedRelief.

The dashboard presents the data in DaTables using {DT}. It is also possible to customize DataTables, as we will show in the examples. DataTables provides filtering, sorting, pagination and other features.

We will use again data related to the regional and sectoral productive structure of Peru for 2018. Data comes from the Peruvian National Institute of Statistics and Informatics (INEI).

The INEI distinguishes 12 major economic / productive sectors:

  • Agriculture, Livestock, Hunting and Forestry.
  • Fishing and Aquaculture.
  • Extraction of Minerals, Gas and Oil.
  • Manufacturing.
  • Electricity, Gas and Water.
  • Construction.
  • Commerce.
  • Transportation, Storage, Mail and Messaging.
  • Accommodation and Restaurants.
  • Telecommunications and Other Information Services.
  • Public Administration and Defence.
  • Other Services.


Gross Value Added by region (in constant 2007 PEN thousands) and % of total GVA, 2018
Leaflet | Tiles © Esri — Source: Esri
Productive Economic Structure by region, 2018. (GVA in constant 2007 PEN thousands)
050M100M150M200MMadre de DiosTumbesAmazonasHuancavelicaUcayaliPascoAyacuchoHuánucoSan MartínTacnaApurímacMoqueguaLoretoPunoCajamarcaLambayequeJunínIcaPiuraAncashCuscoLa LibertadArequipaLima
Other ServicesPublic Administration and DefenceTelecommunications and Other Information ServicesAccommodation and RestaurantsTransportation, Storage, Mail and MessagingCommerceConstructionElectricity, Gas and WaterManufacturingExtraction of Minerals, Gas and OilFishing and AquacultureAgriculture, Livestock, Hunting and ForestryGross Value Added by region and sector (constant 2007 PEN thousands)Source: INEI | Lima includes Callao en Lima Province


Datatable with fixed column, info = T, sort = T, and values centered.


 



Datatable with filter= bottom, class= 'cell-border stripe', searching= T


 
1. REGIONAL CONTRIBUTION TO NATIONAL GVA (DESC)
 
2. SECTORAL CONTRIBUTION TO NATIONAL GVA (DESC)
 
3. SECTORAL CONTRIBUTION OF EACH REGION TO NATIONAL GVA (DESC)
 
4. SECTORAL CONTRIBUTION TO REGIONAL GVA (DESC by region)
 
5. REGIONAL CONTRIBUTION TO SECTORAL GVA (DESC by sector)
 
6. SECTOR IN EACH REGION THAT CONTRIBUTES MOST TO NATIONAL GVA (DESC by %)
 
Example I. Sectoral Level

Example II. Regional Level

Example I. Sectoral Level
GVA, economic sector and region, 2018Accommodation and RestaurantsAgriculture, Livestock, Hunting and ForestryCommerceConstructionElectricity, Gas and WaterExtraction of Minerals, Gas and OilFishing and AquacultureManufacturingOther servicesPublic Administration and DefenceTelecommunications and Other Information ServicesTransportation, Storage, Mail and Messaging
Example II. Regional Level
GVA, region and economic sector, 2018AmazonasAncashApurímacArequipaAyacuchoCajamarcaCuscoHuancavelicaHuánucoIcaJunínLa LibertadLambayequeLimaLoretoMadre de DiosMoqueguaPascoPiuraPunoSan MartínTacnaTumbesUcayali
Example I. Sectoral Level
Created with Highcharts 7.0.1Chart context menuGVA, economic sector and region, 2018AmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLaLibertadLaLibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLaLibertadLaLibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLaLibertadLaLibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLaLibertadLaLibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLaLibertadLaLibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLaLibertadLaLibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLa LibertadLa LibertadLambayequeLambayequeLimaLimaLoretoLoretoMadre deDiosMadre deDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSan MartínSan MartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLa LibertadLa LibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLaLibertadLaLibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLaLibertadLaLibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLa LibertadLa LibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayaliAmazonasAmazonasAncashAncashApurímacApurímacArequipaArequipaAyacuchoAyacuchoCajamarcaCajamarcaCuscoCuscoHuancavelicaHuancavelicaHuánucoHuánucoIcaIcaJunínJunínLaLibertadLaLibertadLambayequeLambayequeLimaLimaLoretoLoretoMadredeDiosMadredeDiosMoqueguaMoqueguaPascoPascoPiuraPiuraPunoPunoSanMartínSanMartínTacnaTacnaTumbesTumbesUcayaliUcayali
Example II. Regional Level
Created with Highcharts 7.0.1Chart context menuGVA, region and economic sector, 2018AccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishing and AquacultureFishing and AquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtraction ofMinerals, Gasand OilExtraction ofMinerals, Gasand OilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOther servicesOther servicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionof Minerals,Gas and OilExtractionof Minerals,Gas and OilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtraction of Minerals,Gas and OilExtraction of Minerals,Gas and OilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOther servicesOther servicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,Gas andOilExtractionofMinerals,Gas andOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtraction ofMinerals, Gasand OilExtraction ofMinerals, Gasand OilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOther servicesOther servicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,Gas andOilExtractionofMinerals,Gas andOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionof Minerals,Gas and OilExtractionof Minerals,Gas and OilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,Gasand OilExtractionofMinerals,Gasand OilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodation andRestaurantsAccommodation andRestaurantsAgriculture,Livestock,Hunting andForestryAgriculture,Livestock,Hunting andForestryCommerceCommerceConstructionConstructionElectricity,Gas and WaterElectricity,Gas and WaterExtraction of Minerals,Gas and OilExtraction of Minerals,Gas and OilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOther servicesOther servicesPublic Administration andDefencePublic Administration andDefenceTelecommunications and OtherInformation ServicesTelecommunications and OtherInformation ServicesTransportation, Storage, Mailand MessagingTransportation, Storage, Mailand MessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,Gas andOilExtractionofMinerals,Gas andOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,Gas andOilExtractionofMinerals,Gas andOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,Gas andOilExtractionofMinerals,Gas andOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,Gas andOilExtractionofMinerals,Gas andOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishingandAquacultureFishingandAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessagingAccommodationandRestaurantsAccommodationandRestaurantsAgriculture,Livestock,HuntingandForestryAgriculture,Livestock,HuntingandForestryCommerceCommerceConstructionConstructionElectricity,GasandWaterElectricity,GasandWaterExtractionofMinerals,GasandOilExtractionofMinerals,GasandOilFishing andAquacultureFishing andAquacultureManufacturingManufacturingOtherservicesOtherservicesPublicAdministrationandDefencePublicAdministrationandDefenceTelecommunicationsandOtherInformation ServicesTelecommunicationsandOtherInformation ServicesTransportation,Storage,MailandMessagingTransportation,Storage,MailandMessaging
---
title: "Data visualization: Treemaps with {treemap}, {d3treeR} and {highcharter}"
output: 
  flexdashboard::flex_dashboard:
    storyboard: true
    orientation: columns
    source_code: embed
    vertical_layout: fill
    theme: paper
---



```{r setup, include=FALSE}


# PACKAGES / LIBRARIES:

library(flexdashboard)
library(tidyverse)
library(plotly)
library(leaflet)
library(rnaturalearth)
library(treemap)
library(d3treeR)
library(highcharter)
library(readxl)
library(stringr)
library(knitr)
library(DT)
library(viridisLite)

options(scipen=10000)

```

Peru
===========================================================================

Column {data-width=300}
---------------------------------------------------------------------------

### 

\

This dashboard is a continuation of a [previous post](https://rquer.netlify.com/sunburst_treemaps#peru). As we explained in there, in a **treemap chart** each brand of a "tree" is given a rectangle, which is then tiled with smaller rectangles. Then, each area is proportional to a specified dimension of the data. **Treemaps** are very useful for displaying hierarchical data. In the post mentioned we explained how to create interactive sunburst charts and treemaps using {plotly}. In this occasion we will show how to create static treemaps using {treemap} and animated treemaps with {d3treeR} and {highcharter}. The treemaps created with {highcharter} are, in my opinion, especially beautiful and very functional. However, note that although {highcharter} is free for personal users, schools, ngos, etc., it is not free for commercial or governmental use. 


On the other hand, the map of Peru is created using {leaflet}. The tootips have been customized to show the name of each region when the user hovers over a region. When clicking on one region it will show the total GVA of the region selected and the % with respect to the total GVA of the country. The provider of the base map is `Esri.WorldShadedRelief`. 


The dashboard presents the data in DaTables using {DT}. It is also possible to customize DataTables, as we will show in the examples. DataTables provides filtering, sorting, pagination and other features. 


We will use again data related to the **regional and sectoral productive structure of Peru for 2018**. Data comes from the Peruvian National Institute of Statistics and Informatics ([INEI](https://www.inei.gob.pe/)). 


The INEI distinguishes 12 major economic / productive sectors: 

- Agriculture, Livestock, Hunting and Forestry.
- Fishing and Aquaculture.
- Extraction of Minerals, Gas and Oil.
- Manufacturing.
- Electricity, Gas and Water.
- Construction.
- Commerce.
- Transportation, Storage, Mail and Messaging.
- Accommodation and Restaurants.
- Telecommunications and Other Information Services.
- Public Administration and Defence.
- Other Services.

\






Column
---------------------------------------------------------------------------

### Gross Value Added by region (in constant 2007 PEN thousands) and % of total GVA, 2018

```{r}

library(readxl)
peru_mapa_vab2018 <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/peru_mapa_vab2018.xlsx")

peru_mapa_vab2018$Vab_perc <- formatC(peru_mapa_vab2018$Vab_perc, digits=3)
peru_mapa_vab2018$Vab_perc <- as.numeric(peru_mapa_vab2018$Vab_perc)
peru_mapa_vab2018$vab_2018<- format(peru_mapa_vab2018$vab_2018, big.mark = ",")


peru_map_region <- rnaturalearth::ne_states(country = "Peru", returnclass = "sf") %>%
  select(name, iso_3166_2, geometry) %>%
 left_join(peru_mapa_vab2018, 
            by = "name") 


peru_map_region %>%
  leaflet() %>%
  addProviderTiles(providers$Esri.WorldShadedRelief) %>%
  addPolygons(
    weight = 1,
    label = ~ name,
    color = "darkgreen",
    popup = ~paste("Region:", name,
                   "",
                   "GVA:", vab_2018,
                   "",
                   "% GVA:", Vab_perc))

```



Column 
---------------------------------------------------------------------------

### Productive Economic Structure by region, 2018. (GVA in constant 2007 PEN thousands)

```{r}


Peru_vab_sectores <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/Peru_vab_sectores_2.xlsx")


names(Peru_vab_sectores) = c("Regions", "AGR", "PES", "EXT", "MAN", "ELEC", "CONS", "COM", "TRANS", "REST", "TELEC", "ADPUB", "OS")


x<-Peru_vab_sectores %>%
  group_by(Regions) %>%
  mutate(total= AGR + PES + EXT + MAN + ELEC + CONS + COM + TRANS + REST + TELEC + ADPUB + OS) %>%
  arrange(total) %>%
  ungroup()

x$Regions = factor(x$Regions, levels = x$Regions)

plotly::plot_ly(data = x,
                y = ~ Regions,
                x = ~ AGR, 
                orientation = 'h',
                name = 'Agriculture, Livestock, Hunting and Forestry', 
                type = 'bar') %>%
  plotly::add_trace( x = ~ PES, 
                     name = "Fishing and Aquaculture") %>% 
  plotly::add_trace( x = ~ EXT, 
                     name = "Extraction of Minerals, Gas and Oil") %>% 
  plotly::add_trace( x = ~ MAN, 
                     name = "Manufacturing") %>%
  plotly::add_trace( x = ~ ELEC, 
                     name = "Electricity, Gas and Water") %>%
  plotly::add_trace( x = ~ CONS, 
                     name = "Construction") %>% 
  plotly::add_trace( x = ~ COM, 
                     name = "Commerce") %>% 
  plotly::add_trace( x = ~ TRANS, 
                     name = "Transportation, Storage, Mail and Messaging") %>%
  plotly::add_trace( x = ~ REST, 
                     name = "Accommodation and Restaurants") %>%
  plotly::add_trace( x = ~ TELEC, 
                     name = "Telecommunications and Other Information Services") %>%
  plotly::add_trace( x = ~ ADPUB, 
                     name = "Public Administration and Defence") %>%
  plotly::add_trace( x = ~ OS, 
                     name = "Other Services") %>%
  plotly::layout(title = " Gross Value Added by region and sector \n (constant 2007 PEN thousands)",
                 barmode = 'stack', 
                 legend = list(x = 0.5, y = 0.1),
                 yaxis = list(title = ""),
                 xaxis = list(title = "Source: INEI | Lima includes Callao en Lima Province"),
                 hovermode = "compare",
                 margin = list(
                   l = 20,
                   r = 10,
                   b = 10,
                   t = 80,
                   pad = 2
                 ))




```





datatable- DT
====================================================================================

Columna {data-width=700}
---------------------------------------------------------------------------

\

### Datatable with fixed column, `info = T`, `sort = T`, and values centered. 

\

```{r}


Peru_vab_sectores <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/Peru_vab_sectores_2.xlsx")


datatable(Peru_vab_sectores, 
          rownames = F,
          extensions = "FixedColumns",
          options = list(
            info = TRUE, 
            sort = TRUE,
            fixedColumns = list(leftColumns = 1),
            columnDefs = list(list(className = 'dt-center', targets = 1:12))
          )
          ) 


```

\



Columna {data-width=300}
---------------------------------------------------------------------------

\

### Datatable with `filter= bottom`, `class= 'cell-border stripe'`, `searching= T`

\

```{r}

Peru_sectores <- Peru_vab_sectores %>%
  gather(key = "sector", value = "vab", 2:13)


datatable(Peru_sectores, 
          filter = "bottom",
          rownames = FALSE,
          class = 'cell-border stripe',
          extensions = "FixedColumns",
          options = list(
            searching = TRUE,
            info = TRUE, 
            sort = TRUE,
            fixedColumns = list(leftColumns = 1))
          )


```


Few questions about the data
=================================================================================

Column
------------------------------------------------------------------------------

### **1. REGIONAL CONTRIBUTION TO NATIONAL GVA (DESC)**

```{r}

a <- Peru_sectores %>%
  group_by(Regions) %>%
  summarise(vab_regional = sum(vab)) %>%
  mutate(total= sum(vab_regional), percent = 100*(vab_regional/total)) %>%
  arrange(desc(percent)) %>%
  select(Regions, percent) %>%
  ungroup()

a$percent <- formatC(a$percent, format = "f", digits = 2)

datatable(a)

```


### **2. SECTORAL CONTRIBUTION TO NATIONAL GVA (DESC)**

```{r}

b <- Peru_sectores %>%
  group_by(sector) %>%
  summarise(vab_regional = sum(vab)) %>%
  mutate(total= sum(vab_regional), percent = 100*(vab_regional/total)) %>%
  arrange(desc(percent)) %>%
  select(sector, percent) %>%
  ungroup()

b$percent <- formatC(b$percent, format = "f", digits = 2)

datatable(b)

```

Column
------------------------------------------------------------------------------

### **3. SECTORAL CONTRIBUTION OF EACH REGION TO NATIONAL GVA (DESC)**

```{r}

c <- Peru_sectores %>%
  mutate(suma_total= sum(vab), percent= 100*(vab/suma_total)) %>%
  select(Regions, sector,percent) %>%
  arrange(desc(percent)) 

c$percent <- formatC(c$percent, format = "f", digits = 2)
  
datatable(c)
```

### **4. SECTORAL CONTRIBUTION TO REGIONAL GVA (DESC by region)** 

```{r}

d <- Peru_sectores %>%
  group_by(Regions) %>%
  mutate(suma_total= sum(vab), percent= 100*(vab/suma_total)) %>%
  select(Regions, sector, percent) %>%
  arrange(Regions, desc(percent)) %>%
  ungroup()

d$percent <- formatC(d$percent, format = "f", digits = 2)

datatable(d)

```

Column
------------------------------------------------------------------------------

### **5. REGIONAL CONTRIBUTION TO SECTORAL GVA (DESC by sector)**

```{r}

e <- Peru_sectores %>%
  group_by(sector) %>%
  mutate(suma_total= sum(vab), percent= 100*(vab/suma_total)) %>%
  select(sector, Regions, percent) %>%
  arrange(sector, desc(percent)) %>%
  ungroup()

e$percent <- formatC(e$percent, format = "f", digits = 2)

datatable(e)

```

### **6. SECTOR IN EACH REGION THAT CONTRIBUTES MOST TO NATIONAL GVA (DESC by %)**

```{r}

f <- Peru_sectores %>%
  mutate(suma_total= sum(vab), percent= 100*(vab/suma_total)) %>%
  select(Regions, sector, percent) %>%
  arrange(desc(percent)) %>%
  group_by(Regions) %>%
  top_n(1) %>%
  ungroup()

f$percent <- formatC(f$percent, format = "f", digits = 2)

datatable(f)

```



{treemap}
====================================================================================


### Example I. Sectoral Level


```{r, fig.width=14, fig.height=8}

tree_sectores <- treemap(
  Peru_sectores,
  index=c("sector","Regions"),
  vSize="vab",
  title = "GVA, economic sector and region, 2018 ",
  vColor="sector",
  type="index",
  force.print.labels = F,
  border.col = c("black", "white"),
  border.lwds = c(3,2),
  align.labels = list(
    c("center","center"),
    c("center", "top")
  )
)



```


{treemap} II
====================================================================================


### Example II. Regional Level


```{r, fig.width=14, fig.height=8}

tree_regions <- treemap(
  Peru_sectores,
  index=c("Regions", "sector"),
  vSize="vab",
  title = "GVA, region and economic sector, 2018 ",
  vColor="vab",
  type="value",
  palette = "BuPu",
  force.print.labels = F,
  border.col = c("black", "white"),
  border.lwds = c(3,2),
  align.labels = list(
    c("center","center"),
    c("center", "top")
  )
)

```


{d3treeR} 
====================================================================================

### Example I. Sectoral Level

```{r}

d3tree(tree_sectores,
       rootname = "GVA, economic sector and region, 2018")

```



{d3treeR} II
====================================================================================


### Example II. Regional Level

```{r}

d3tree(tree_regions,
       rootname = "GVA, region and economic sector, 2018")

```



 {highcharter}
====================================================================================

### Example I. Sectoral Level

```{r}

hctreemap(tree_sectores, allowDrillToNode = TRUE) %>%
  hc_title(text = "GVA, economic sector and region, 2018") %>%
  hc_tooltip(pointFormat = "{point.name}:
                            GVA: {point.value:,.0f}") %>%
  hc_exporting(enabled = TRUE)

```



{highcharter} II
====================================================================================

### Example II. Regional Level

```{r}

hctreemap(tree_regions, allowDrillToNode = TRUE) %>%
  hc_title(text = "GVA, region and economic sector, 2018") %>%
  hc_tooltip(pointFormat = "{point.name}:
                            GVA: {point.value:,.0f}") %>%
  hc_exporting(enabled = TRUE)

```