Regions GVA

Column


Column

Gross Value Added by region (% of total GVA), 2018

Column

Gross Value Added by region (log scale), 2018. (in constant 2007 PEN thousands)

Regions GVApc

Column


Column

Gross Value Added by region (% of total GVA), 2018

Column

Gross Value Added by region (log scale), 2018. (in constant 2007 PEN thousands)

Regions GVApc

Row

Per year

Per region

extra 1

extra 2 (without MOQ)

extra 3

Ec. Structure

Column

Gross Value Added by region (% of total GVA), 2016

Column

SECTORAL PARTICIPATION OVER TOTAL GVA (%)

Treemap

Row

Sectoral Level

Regional Level

Agro and VABpc

Row

%PEao in Agro vs. GVA per cápita

---
title: "Peru"
author: "Rubén F. Bustillo"
output: 
  flexdashboard::flex_dashboard:
    storyboard: true
    orientation: columns
    source_code: embed
    vertical_layout: fill
    theme: paper
---

```{r setup, include=FALSE}

# PACKAGES / LIBRARIES:

library(flexdashboard)
library(tidyverse)
library(plotly)
library(highcharter)
library(readxl)


```



Regions GVA
===========================================================================

Column {data-width=200}
---------------------------------------------------------------------------

### 

\


Column
---------------------------------------------------------------------------

### Gross Value Added by region (% of total GVA), 2018

```{r}

options(scipen=999)

peru_mapa_vab2016 <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/peru_mapa_vab2018.xlsx")

peru_mapa_vab2016_A <- peru_mapa_vab2016 %>%
  mutate(name = if_else(name == "Áncash", "Ancash", name)) %>%
  mutate("woe-name" = name)


peru_mapa_vab2016_A$pob_2016_perc <- formatC(peru_mapa_vab2016_A$pob_2016_perc, digits = 3)
peru_mapa_vab2016_A$Vab_perc_16 <- formatC(peru_mapa_vab2016_A$Vab_perc_16, digits = 3)


hcmap(map = "countries/pe/pe-all", data = peru_mapa_vab2016_A,
      joinBy = "woe-name", value = "vab_2016") %>%
  hc_colorAxis(stops = color_stops()) %>%
  hc_mapNavigation(enabled = TRUE) %>%
  hc_title(text = "Gross Value Added by region, 2016") %>%
  hc_subtitle(text = "In constant 2007 PEN thousands") %>%
  hc_tooltip(pointFormat = "
Population: {point.pob_2016}
Pop (%): {point.pob_2016_perc}
GVA: {point.vab_2016}
GVA (%): {point.Vab_perc_16}", table = TRUE) %>% hc_credits(enabled = TRUE, text = "Source: INEI") ``` Column --------------------------------------------------------------------------- ### Gross Value Added by region (log scale), 2018. (in constant 2007 PEN thousands) ```{r} peru_mapa_vab2016_B <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/peru_mapa_vab2018.xlsx") peru_mapa_vab2016_B %>% arrange(vab_2016) %>% mutate(name = factor(name, levels = name)) %>% plotly::plot_ly(x = ~ vab_2016, y = ~ name, type = 'bar', text = ~ vab_2016, textposition = 'auto', marker = list (color = c('mediumseagreen', 'mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen', 'yellow'))) %>% plotly::layout(title = "", xaxis = list(type = "log", title = ""), yaxis = list(title = "")) %>% plotly::layout(annotations = list(x = 1 , y = -0.05, text = "Source: INEI | The region of Lima (Lima) does not include Lima Province or Callao (Lima Metropolitana) ", showarrow = F, xref='paper', yref='paper', xanchor='right', yanchor='auto', xshift=0, yshift=0, font=list(size=10, color="darkgrey"))) ``` Regions GVApc =========================================================================== Column {data-width=200} --------------------------------------------------------------------------- ### \ Column --------------------------------------------------------------------------- ### Gross Value Added by region (% of total GVA), 2018 ```{r} options(scipen=999) peru_mapa_vab2016 <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/peru_mapa_vab2018.xlsx") peru_mapa_vab2016_A <- peru_mapa_vab2016 %>% mutate(name = if_else(name == "Áncash", "Ancash", name)) %>% mutate("woe-name" = name) peru_mapa_vab2016_A$vabpc_2016 <- as.numeric(formatC(peru_mapa_vab2016$vabpc_2016, digits = 6)) hcmap(map = "countries/pe/pe-all", data = peru_mapa_vab2016_A, joinBy = "woe-name", value = "vabpc_2016") %>% hc_colorAxis(stops = color_stops()) %>% hc_mapNavigation(enabled = TRUE) %>% hc_title(text = "Gross Value Added per cápita by region, 2016") %>% hc_subtitle(text = "In constant 2007 PEN thousands") %>% hc_tooltip(pointFormat = "
Population: {point.pob_2016}
Pop (%): {point.pob_2016_perc}
GVA pc: {point.vabpc_2016}", table = TRUE) %>% hc_credits(enabled = TRUE, text = "Source: INEI") ``` Column --------------------------------------------------------------------------- ### Gross Value Added by region (log scale), 2018. (in constant 2007 PEN thousands) ```{r} peru_mapa_vab2016_A %>% arrange(vabpc_2016) %>% mutate(name = factor(name, levels = name)) %>% plotly::plot_ly(x = ~ vabpc_2016, y = ~ name, type = 'bar', text = ~ vabpc_2016, textposition = 'auto', marker = list (color = c('mediumseagreen', 'mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen','mediumseagreen', 'yellow'))) %>% plotly::layout(title = "", xaxis = list(type = "log", title = ""), yaxis = list(title = "")) %>% plotly::layout(annotations = list(x = 1 , y = -0.05, text = "Source: INEI | The region of Lima (Lima) does not include Lima Province or Callao (Lima Metropolitana) ", showarrow = F, xref='paper', yref='paper', xanchor='right', yanchor='auto', xshift=0, yshift=0, font=list(size=10, color="darkgrey"))) ``` Regions GVApc ============================================================================================= Row {.tabset .tabset-fade} ------------------------------------------------------------- ### Per year ```{r, out.width="100%"} peru_tabla <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/peru_tabla.xlsx") peru_t2 <- peru_tabla %>% select(id, Year, VABpc_07) %>% spread(Year, VABpc_07) fig <- plot_ly(type = "box") fig <- fig %>% add_boxplot(y = peru_t2$'1995', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "1995") fig <- fig %>% add_boxplot(y = peru_t2$'1996', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "1996") fig <- fig %>% add_boxplot(y = peru_t2$'1997', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "1997") fig <- fig %>% add_boxplot(y = peru_t2$'1998', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "1998") fig <- fig %>% add_boxplot(y = peru_t2$'1999', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "1999") fig <- fig %>% add_boxplot(y = peru_t2$'2000', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2000") fig <- fig %>% add_boxplot(y = peru_t2$'2001', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2001") fig <- fig %>% add_boxplot(y = peru_t2$'2002', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2002") fig <- fig %>% add_boxplot(y = peru_t2$'2003', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2003") fig <- fig %>% add_boxplot(y = peru_t2$'2004', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2004") fig <- fig %>% add_boxplot(y = peru_t2$'2005', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2005") fig <- fig %>% add_boxplot(y = peru_t2$'2006', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2006") fig <- fig %>% add_boxplot(y = peru_t2$'2007', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2007") fig <- fig %>% add_boxplot(y = peru_t2$'2008', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2008") fig <- fig %>% add_boxplot(y = peru_t2$'2009', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2009") fig <- fig %>% add_boxplot(y = peru_t2$'2010', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2010") fig <- fig %>% add_boxplot(y = peru_t2$'2011', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2011") fig <- fig %>% add_boxplot(y = peru_t2$'2012', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2012") fig <- fig %>% add_boxplot(y = peru_t2$'2013', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2013") fig <- fig %>% add_boxplot(y = peru_t2$'2014', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2014") fig <- fig %>% add_boxplot(y = peru_t2$'2015', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2015") fig <- fig %>% add_boxplot(y = peru_t2$'2016', jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "2016") fig <- fig %>% layout(title = "GVA per capita by year") fig ``` ### Per region ```{r} peru_t3 <- peru_tabla %>% select(id, Year, VABpc_07) %>% spread(id, VABpc_07) fig <- plot_ly(type = "box") fig <- fig %>% add_boxplot(y = peru_t3$AMA, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "AMA") fig <- fig %>% add_boxplot(y = peru_t3$ANC, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "ANC") fig <- fig %>% add_boxplot(y = peru_t3$APU, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "APU") fig <- fig %>% add_boxplot(y = peru_t3$ARE, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "ARE") fig <- fig %>% add_boxplot(y = peru_t3$AYA, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "AYA") fig <- fig %>% add_boxplot(y = peru_t3$CAJ, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "CAJ") fig <- fig %>% add_boxplot(y = peru_t3$CUS, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "CUS") fig <- fig %>% add_boxplot(y = peru_t3$HUA, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "HUA") fig <- fig %>% add_boxplot(y = peru_t3$HUAC, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "HUAC") fig <- fig %>% add_boxplot(y = peru_t3$ICA, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "ICA") fig <- fig %>% add_boxplot(y = peru_t3$JUN, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "JUN") fig <- fig %>% add_boxplot(y = peru_t3$LAM, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "LAM") fig <- fig %>% add_boxplot(y = peru_t3$LIM, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "LIM") fig <- fig %>% add_boxplot(y = peru_t3$LLIB, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "LLIB") fig <- fig %>% add_boxplot(y = peru_t3$LOR, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "LOR") fig <- fig %>% add_boxplot(y = peru_t3$MDD, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "MDD") fig <- fig %>% add_boxplot(y = peru_t3$MOQ, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "MOQ") fig <- fig %>% add_boxplot(y = peru_t3$PAS, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "PAS") fig <- fig %>% add_boxplot(y = peru_t3$PIU, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "PIU") fig <- fig %>% add_boxplot(y = peru_t3$PUN, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "PUN") fig <- fig %>% add_boxplot(y = peru_t3$SMA, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "SMA") fig <- fig %>% add_boxplot(y = peru_t3$TAC, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "TAC") fig <- fig %>% add_boxplot(y = peru_t3$TUM, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "TUM") fig <- fig %>% add_boxplot(y = peru_t3$UCA, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "UCA") fig <- fig %>% add_boxplot(y = peru_t3$PE, jitter = 0.3, pointpos = -1.8, boxpoints = 'all', marker = list(color = 'rgb(7,40,89)'), line = list(color = 'rgb(7,40,89)'), name = "PERU") fig <- fig %>% layout(title = "GVA per capita by region") fig ``` ### extra 1 ```{r} hcboxplot(x=peru_tabla$VABpc_07, var= peru_tabla$Year, name = "Info")%>% hc_chart(type = "column") ``` ### extra 2 (without MOQ) ```{r} hcboxplot(x=peru_tabla$VABpc_07, var= peru_tabla$Year, outlier= FALSE)%>% hc_chart(type = "column") ``` ### extra 3 ```{r} hcboxplot(x=peru_tabla$VABpc_07, var= peru_tabla$Region) %>% hc_chart(type = "column") ``` Ec. Structure ============================================================================ Column {data-width=400} --------------------------------------------------------------------------- ### Gross Value Added by region (% of total GVA), 2016 ```{r} Peru_vab_sectores <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/Peru_vab_sectores_2016.xlsx") names(Peru_vab_sectores) = c("Regions", "AGR", "PES", "EXT", "MAN", "ELEC", "CONS", "COM", "TRANS", "REST", "TELEC", "ADPUB", "OS") x<-Peru_vab_sectores %>% group_by(Regions) %>% mutate(total= AGR + PES + EXT + MAN + ELEC + CONS + COM + TRANS + REST + TELEC + ADPUB + OS) %>% arrange(total) %>% ungroup() x$Regions = factor(x$Regions, levels = x$Regions) plotly::plot_ly(data = x, y = ~ Regions, x = ~ AGR, orientation = 'h', name = 'Agriculture, Livestock, Hunting and Forestry', type = 'bar') %>% plotly::add_trace( x = ~ PES, name = "Fishing and Aquaculture") %>% plotly::add_trace( x = ~ EXT, name = "Extraction of Minerals, Gas and Oil") %>% plotly::add_trace( x = ~ MAN, name = "Manufacturing") %>% plotly::add_trace( x = ~ ELEC, name = "Electricity, Gas and Water") %>% plotly::add_trace( x = ~ CONS, name = "Construction") %>% plotly::add_trace( x = ~ COM, name = "Commerce") %>% plotly::add_trace( x = ~ TRANS, name = "Transportation, Storage, Mail and Messaging") %>% plotly::add_trace( x = ~ REST, name = "Accommodation and Restaurants") %>% plotly::add_trace( x = ~ TELEC, name = "Telecommunications and Other Information Services") %>% plotly::add_trace( x = ~ ADPUB, name = "Public Administration and Defence") %>% plotly::add_trace( x = ~ OS, name = "Other Services") %>% plotly::layout(title = " Gross Value Added by region and sector, 2016 \n (constant 2007 PEN thousands)", barmode = 'stack', legend = list(x = 0.3, y = 0.5), yaxis = list(title = ""), xaxis = list(title = "Source: INEI | Lima does not include Callao or Lima Province"), hovermode = "compare", margin = list( l = 20, r = 10, b = 10, t = 80, pad = 2 )) ``` Column ----------------------------------------------------------------------------- ### SECTORAL PARTICIPATION OVER TOTAL GVA (%) ```{r} y <-Peru_vab_sectores %>% group_by(Regions) %>% mutate(total= AGR + PES + EXT + MAN + ELEC + CONS + COM + TRANS + REST + TELEC + ADPUB + OS) %>% arrange(total) %>% mutate(AGR_per = (AGR / total)*100) %>% mutate(PES_per = (PES / total)*100) %>% mutate(EXT_per = (EXT / total)*100) %>% mutate(MAN_per = (MAN / total)*100) %>% mutate(ELEC_per = (ELEC / total)*100) %>% mutate(CONS_per = (CONS / total)*100) %>% mutate(COM_per = (COM / total)*100) %>% mutate(TRANS_per = (TRANS / total)*100)%>% mutate(REST_per = (REST / total)*100) %>% mutate(TELEC_per = (TELEC / total)*100) %>% mutate(ADPUB_per = (ADPUB / total)*100) %>% mutate(OS_per = (OS / total)*100) %>% ungroup() y$Regions = factor(y$Regions, levels = y$Regions) y$AGR_per <- format(y$AGR_per, digits = 3) #y$PES_per <- format(y$PES_per, digits = 2) y$EXT_per <- format(y$EXT_per, digits = 3) y$MAN_per <- format(y$MAN_per, digits = 3) y$ELEC_per <- format(y$ELEC_per, digits = 3) y$CONS_per <- format(y$CONS_per, digits = 3) y$COM_per <- format(y$COM_per, digits = 3) y$TRANS_per <- format(y$TRANS_per, digits = 3) y$REST_per <- format(y$REST_per, digits = 3) y$TELEC_per <- format(y$TELEC_per, digits = 3) y$ADPUB_per <- format(y$ADPUB_per, digits = 3) y$OS_per <- format(y$OS_per, digits = 3) plotly::plot_ly(data = y, y = ~ Regions, x = ~ AGR_per, orientation = 'h', name = 'Agriculture, Livestock, Hunting and Forestry', type = 'bar') %>% plotly::add_trace( x = ~ PES_per, name = "Fishing and Aquaculture", text = ~ "") %>% plotly::add_trace( x = ~ EXT_per, name = "Extraction of Minerals, Gas and Oil", text = ~ "") %>% plotly::add_trace( x = ~ MAN_per, name = "Manufacturing", text = ~ "") %>% plotly::add_trace( x = ~ ELEC_per, name = "Electricity, Gas and Water", text = ~ "") %>% plotly::add_trace( x = ~ CONS_per, name = "Construction", text = ~ "") %>% plotly::add_trace( x = ~ COM_per, name = "Commerce", text = ~ "") %>% plotly::add_trace( x = ~ TRANS_per, name = "Transportation, Storage, Mail and Messaging", text = ~ "") %>% plotly::add_trace( x = ~ REST_per, name = "Accommodation and Restaurants", text = ~ "") %>% plotly::add_trace( x = ~ TELEC_per, name = "Telecommunications and Other Information Services", text = ~ "") %>% plotly::add_trace( x = ~ ADPUB_per, name = "Public Administration and Defence", text = ~ "") %>% plotly::add_trace( x = ~ OS_per, name = "Other Services", text = ~ "") %>% plotly::layout(title = " Gross Value Added by region and sector, 2016 \n (% of total GVA)", barmode = 'stack', legend = list(x = 1, y = 0.5), yaxis = list(title = ""), xaxis = list(title = "Source: INEI | Lima does not include Callao en Lima Province"), hovermode = "compare", margin = list( l = 20, r = 0, b = 10, t = 80, pad = 2 )) ``` Treemap ========================================================================= Row {.tabset .tabset-fade} ------------------------------------------------------------- ### Sectoral Level ```{r include=FALSE} Peru_vab_sectores <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/Peru_vab_sectores_2016.xlsx") Peru_sectores <- Peru_vab_sectores %>% gather(key = "sector", value = "vab", 2:13) library(treemap) tree_sectores <- treemap( Peru_sectores, index=c("sector","Regions"), vSize="vab", title = "GVA, economic sector and region, 2016 ", vColor="sector", type="index", force.print.labels = F, border.col = c("black", "white"), border.lwds = c(3,2), align.labels = list( c("center","center"), c("center", "top") ) ) ``` ```{r} hctreemap(tree_sectores, allowDrillToNode = TRUE) %>% hc_title(text = "GVA, economic sector and region, 2016") %>% hc_tooltip(pointFormat = "{point.name}: GVA: {point.value:,.0f}") %>% hc_exporting(enabled = TRUE) ``` ### Regional Level ```{r include=FALSE} tree_regions <- treemap( Peru_sectores, index=c("Regions", "sector"), vSize="vab", title = "GVA, region and economic sector, 2016 ", vColor="vab", type="value", palette = "BuPu", force.print.labels = F, border.col = c("black", "white"), border.lwds = c(3,2), align.labels = list( c("center","center"), c("center", "top") ) ) ``` ```{r} hctreemap(tree_regions, allowDrillToNode = TRUE) %>% hc_title(text = "GVA, region and economic sector, 2016") %>% hc_tooltip(pointFormat = "{point.name}: GVA: {point.value:,.0f}") %>% hc_exporting(enabled = TRUE) ``` Agro and VABpc ============================================================================= Row {.tabset .tabset-fade} ------------------------------------------------------------- ### %PEao in Agro vs. GVA per cápita ```{r} options(scipen=10000) peru_df <- read_excel("C:/Users/Usuario/Desktop/r_que_r/r_que_r/content/datasets/peru_tabla.xlsx") peru_df <- peru_df %>% filter(Year %in% c(2001 : 2016)) %>% filter(id != "PE") %>% mutate(Geo = case_when( Geo == "Costa" ~ "Coast", Geo == "Sierra" ~ "Highlands", Geo == "Selva" ~ "Forest" )) peru_df_A <- peru_df %>% arrange(desc(Year)) %>% distinct(Name, .keep_all = TRUE) peru_df_B<- peru_df %>% nest(-Name) %>% mutate(data = map(data, mutate_mapping, hcaes(x= Year, y = PEAO_AGR_PER), drop = TRUE), data = map(data, list_parse)) %>% rename(ttdata = data) peru_df_plot<-left_join(peru_df_A, peru_df_B) pfmc_P <- tooltip_chart( accesor = "ttdata", hc_opts = list( xAxis = list(type = "category") ) ) vars_B <- c("Region", "Population", "PEAO") tt_P <- tooltip_table(x = vars_B, y = sprintf("{point.%s}", vars_B)) ttt_P <- tt_P %>% str_remove_all("point\\.") %>% str_remove_all("\\s+") peru_df_plot_b <- peru_df_plot %>% mutate( "Population" = Poblacion, "GVA pc" = VABpc_07, "% AGR" = PEAO_AGR_PER) peru_df_plot_b$Population <- format(peru_df_plot_b$Population, big.mark = ",", digits = 0) peru_df_plot_b$PEAO <- format(peru_df_plot_b$PEAO, big.mark = ",", digits = 0) peru_df_plot_b <- peru_df_plot_b %>% mutate( tttext_P = str_glue_data(peru_df_plot_b, ttt_P) ) pfmc_P <- tooltip_chart( width = 400, height = 400, accesor = "ttdata", hc_opts = list( title = list(text = "point.tttext_P", useHTML = TRUE), xAxis = list(type = "category") ) ) hchart( peru_df_plot_b, "scatter", hcaes(VABpc_07, PEAO_AGR_PER, name = Region, size = Poblacion, group = Geo)) %>% hc_xAxis(type = "logarithmic", title = list(text = "GVA per capita (log scale)")) %>% hc_yAxis(title = list(text = "% PEAO in agriculture")) %>% hc_colors(c("#2980b9", "#2ecc71", "#d35400" )) %>% hc_tooltip(useHTML = TRUE, pointFormatter = pfmc_P) %>% hc_title (text = "GVA per capita VS. % PEAO in Agriculture, 2016") %>% hc_subtitle(text = "PEAO: Actively occupied population. GVA per capita in constant 2007 PEN") %>% hc_credits(enabled = TRUE, text = "Source: INEI") %>% hc_add_theme(hc_theme_darkunica()) ```