R que R

Maps: Interactive maps (III)

Sat, Mar 28, 2020
R
#maps #slider #plotly #ggplot2


Libraries / packages


This post is just a continuation of the previous post on interactive maps. In this occasion we will add a slider to our map, map created again using {ggplot2} and {plotly}, that will help us to display the evolution of data over time.



library(tidyverse)
library(gganimate)
library(ggthemes)
library(plotly)


Meteorites dataset



world <- map_data("world") %>%
  filter(region != "Antarctica")



meteoritos <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-06-11/meteorites.csv")

options(scipen = 999) 

meteoritos_Mundo <- meteoritos %>%
  filter(fall == "Fell") %>%
  filter(year > 1980) %>%
  drop_na() %>%
  arrange(mass)


Example 2.



mapa_animado_2 <- world %>%
  ggplot() +
  geom_polygon(aes( x= long, y = lat, group = group),
               fill = "grey20",
               color = "white",
               size = 0.01) +
  geom_point(data= meteoritos_Mundo, 
             aes(x = long, 
                 y = lat, 
                 frame = year,
                 size = mass),
             color = "orange",
             alpha = 0.7) +
  labs( title = "Meteorite Landings \n from 1980 to 2013}",
        caption = "The Meteoritical Society") +
  theme_map() +
  scale_size_continuous(guide = F) +
  scale_color_discrete(name = "Type") +
  theme(plot.title = element_text(size = 10, hjust = 0.5))


fig_2 <- ggplotly(mapa_animado_2) %>% animation_slider(currentvalue = list(prefix = "Year ", font = list(color="orange")))

fig_2


If you can not see the plot click here